Acta Cryst. (1990). C46, 2096-2100

Octacarbonyl-di- μ -chloro-tetra- μ -diphenylphosphido- μ_4 -phenylphosphido-tetrarhenium(3 Re—Re) and Octacarbonyl-di- μ -hydrido-tetra- μ -diphenylphosphido- μ_4 -phenylphosphido-quadro-tetrarhenium(4 Re—Re) 0.5 Dichloromethane Solvate

BY NIKOLAOS KLOURAS, ULRICH FLÖRKE, HANS-JÜRGEN HAUPT AND MATTHIAS WOYCIECHOWSKI

Anorganische und Analytische Chemie, Universität-GH-Paderborn, D-4790 Paderborn, Warburger Strasse 100, Federal Republic of Germany

(Received 21 November 1989; accepted 28 March 1990)

Abstract. $[\text{Re}_4(\mu-\text{Cl})_2(\mu-\text{PPh}_2)_4(\mu_4-\text{PPh})(\text{CO})_8]$ (I), $M_r = 1888.6$, triclinic, $P\overline{1}$, a = 12.973 (4), b =13.246 (3), c = 20.463 (4) Å, $\alpha = 101.67$ (2), $\beta =$ 96.01 (2), $\gamma = 112.48$ (2)°, U = 3117.2 Å³, Z = 2, $D_{\rm x} = 2.012 {\rm Mg m^{-3}}$ λ (Mo K α) = 0.71073 Å, μ (Mo K α) = 8.11 mm⁻¹, F(000) = 1780.T =298 (1) K, R = 0.043 for 6666 unique observed intensities. All four Re atoms in the 66-valence-electron (VE) complex are bridged by a common μ_{4} -PPh group and situated in a plane. They are further edge-bridged by four diphenylphosphido groups on the periphery of the plane, alternatively oriented upand downwards. The bridging of these Re atoms is completed with two chloro ligands in opposite positions below the basal plane of the $\text{Re}_4(\mu_4-P)$ polyhedron. Of these Cl-bridged Re-Re distances, one [3.382(1) Å] is non-bonding and the other [3.192(1) Å] is bonding. The other two Re-Re distances correspond to single bonds [av. Re-Re $[\text{Re}_4(\mu-\text{H})_2(\mu-\text{PPh}_2)_4(\mu_4-\text{PPh})(\text{CO})_8].$ 2·942 (1) Å]. $0.5 \text{CH}_2 \text{Cl}_2$ (II), $M_r = 1862.2$, triclinic, $P\overline{1}$, a =12.715 (2), b = 13.446 (2), c = 20.492 (2) Å, $\alpha =$ 1758, T = 298 (1) K, R = 0.036 for 6219 unique observed intensities. The coordination of the central molecular fragment is as above, the two chloro ligands being substituted by two hydrido ligands which could be located from a ΔF map and confirmed by δ ¹H NMR measurements. The planar arrangement of the four Re atoms in the 62-VE complex comprises four Re—Re bonds [2.969 (1), 2.961 (1), 2.928 (1) and 2.918 (1) Å] which indicates partial π bonding.

Introduction. Both title substances belong to the family of phosphido-bridged transition metal cluster compounds which are of interest as homogeneous catalysts (Haupt, Balsaa & Flörke, 1988*a,b*). The stereochemistry of their common μ_4 -PPh bridge 0108-2701/90/112096-05\$03.00

group favours a priori a planar arrangement of the four Re atoms. To fulfil the demand of the '18electron' rule, or Effective Atomic Number rule (EAN) (Owen, 1988), in the case of a metal-metal single-bonded four-membered ring 64 valence electrons (VE) are needed. This was previously ascertained in substances like $\operatorname{Re}_4(\mu-H)(\mu-X)$ - $(\mu$ -PPh₂)₄ $(\mu_4$ -PPh)(CO)₈ (X = Cl, Br, I) (Woyciechowski, 1989). On the other hand, the electron count gives for (I) two VE in excess and for (II) two VE in deficit. On this basis, it can be proposed that two VE in excess causes an opening of the rhenium ring, whereas the lack of two VE makes possible the formation of a π -type frontier orbital or of a transannular Re-Re bond in the four-membered ring. To recognize the actual Re-Re bond pattern in each of these solids the X-ray structural determination was necessary. Such results might also be used to discuss δ^{31} P NMR data of (I) and (II) in CDCl₃ solution, which allow a discrimination between bonded and non-bonded Re atoms since they surprisingly show for both compounds a lack of two Re-Re bonds.

Experimental. Heating Re₂(μ -PPh₂)₂(CO)₈ in xylene in the presence of indium(III) chloride at 493 K gave black crystals of (I). Violet crystals of (II) were obtained from the reactants Re₂(CO)₁₀, HPPh₂ and iodine at 523 K (Woyciechowski, 1989). δ^{31} P NMR data [Bruker FT-WH 250, CDCl₃ solution at 298 K; H₃PO₄ (85%) as standard]: (I) 223·2 (*t*, 2P), -8·2 (*t*, IP), -109·7 (*dt*, 2P); (II) 206·7 (*t*, 2P), 50·6 (*t*, 1P), -52·8 (*dt*, 2P), and δ^{-1} H NMR: -10·9 (*s*, hydrido 2H) with TMS as standard. Cyclovoltammetric data of (I) in CH₂Cl₂/TBAPF₆ solution (*c* = 0·36 mmol 1⁻¹) with platinum as working electrode (scan velocity 20 mV s⁻¹): *E*^f (*vs* NHE) = 553 mV, $\Delta E_p =$ 54 mV, $E_{p,red} - E_{p,red}/2$ or $E_{p,ox} - E_{p,ox}/2 = 42$ mV and $I_{p,red}/I_{p,ox} = 1$.

Crystal size of (I) $0.15 \times 0.22 \times 0.31$ mm, Nicolet R3m/V diffractometer, graphite-monochromated Mo K α radiation, $\lambda = 0.71073$ Å, lattice parameters © 1990 International Union of Crystallography

were refined from 25 reflections, $5 \le 2\theta \le 25^\circ$; $\omega - 2\theta$ scan, 9172 intensities were collected, $3 \le 2\theta \le 46^\circ$, $0 \le h \le 14, -14 \le k \le 14, -22 \le l \le 22$, three standards were recorded every 400 reflections, only random deviations. Lp correction, empirical absorption correction via ψ scans, min./max. transmission 0.185/0.248, after merging ($R_{int} = 0.0464$) 8717 unique intensities, 6666 were considered observed, $F > 4\sigma(F)$; structure was solved by Patterson and Fourier methods, full-matrix least-squares refinement based on F (282 parameters), Re, Cl and P refined anisotropically, phenyl groups were treated as rigid bodies (C-C = 1.395, C-H = 0.96 Å), H atoms were fixed in calculated positions with $U_{iso} = 0.09 \text{ Å}^2$, max. $(\Delta/\sigma) = 0.001$, max. height in final ΔF map = $1.3 \text{ e} \text{ Å}^{-3}$ near Re position, refinement converged to $R = 0.043, wR = 0.044, w = 1/[\sigma^2(F) + 0.0005F^2].$

Crystal size of (II) $0.11 \times 0.20 \times 0.43$ mm, lattice parameters were refined from 23 reflections, $8 \le 2\theta$ $\leq 28^{\circ}$; $\omega - 2\theta$ scan, 8347 intensities, $3 \leq 2\theta \leq 45^{\circ}$, $-13 \le h \le 13, -14 \le k \le 14, 0 \le l \le 22$, three standards every 400 reflections, only random deviations, corrections as above, min./max. transmission 0.353/ 0.694, after merging ($R_{int} = 0.016$) 8072 unique intensities, 6219 were observed, $F > 4\sigma(F)$; structure solution with Re coordinates from above structure as starting parameters, subsequent ΔF maps, full-matrix least-squares refinement on F (268 parameters), Re and P refined anisotropically, phenyl groups and H atoms as above, positions of H-bridging atoms located from ΔF map but not refined, max. $(\Delta/\sigma) =$ 0.001, max. height in final ΔF map = 1.1 e Å⁻³ near Reposition, refinement converged to R = 0.0357, wR = 0.0318, $w = 1/[\sigma^2(F) + 0.0001F^2]$. Scattering facstructure solution and refinement bv tors. SHELXTL-Plus (Sheldrick, 1988) for both structures.

Discussion. The structures of the title compounds are shown in Figs. 1 and 2. Atomic positional parameters are given in Tables 1 and 2, bond lengths and angles in Table 3.*

The six non-metal ligand atoms of each Re coordination sphere (3P, 2C, H or Cl) are arranged in distorted octahedra. For these ligands, the stereochemical characteristics of the μ_4 -PPh group favour planar-positioned Re atoms, additionally bridged by a sequence of up- and downwards oriented P atoms. The bridging is completed by one hydrido or Cl Table 1. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters ($Å^2 \times 10^3$) of (I)

	Y	ν	7	1/*
	~	, , , , , , , , , , , , , , , , , , ,	1	
Re(1)	359 (1)	2821 (1)	1/10(1)	28 (1)
Re(3)	2918 (1)	6048 (1)	3017 (1)	30 (1)
Re(2)	3210 (1)	4327 (1)	1993 (1)	30 (1)
Re(4)	273 (1)	4509 (1)	2862 (1)	28 (1)
Cl(1)	1608 (3)	4329 (3)	1183 (2)	36 (2)
C(2)	1188 (3)	6000 (3)	2270 (2)	40 (2)
D(1)	1058 (3)	2304 (3)	1497 (2)	31 (2)
F(1) D(2)	4096 (3)	£339 (3)	2197(2)	23 (2)
P(2)	4080 (3)	0328 (J) 50(4 (J)	2107 (2)	33 (2)
P(3)	1661 (3)	5964 (3)	3841 (2)	31 (2)
P(4)	- 1142 (3)	3411 (3)	1866 (2)	31 (2)
P(5)	1874 (3)	3906 (3)	2773 (2)	36 (2)
C(1)	- 500 (13)	2001 (13)	798 (8)	44 (4)
O(1)	- 1008 (11)	1501 (11)	249 (7)	72 (4)
C(2)	- 450 (13)	1543 (13)	2008 (8)	42 (4)
$\dot{0}2\dot{2}$	- 967 (10)	727 (10)	2166 (6)	58 (3)
C	4389 (13)	4208 (13)	2536 (8)	44 (4)
	5116 (0)	4100 (10)	2863 (6)	57 (3)
	2062 (12)	4192 (12)	1221 (8)	AA (A)
C(4)	3963 (13)	4182 (13)	1231 (6)	44 (4)
O(4)	4428 (12)	4122 (12)	/81 (/)	84 (4)
C(5)	4212 (13)	6228 (13)	3618 (8)	43 (4)
O(5)	5023 (10)	6381 (10)	3994 (6)	56 (3)
C(6)	3432 (14)	7650 (15)	3240 (8)	52 (4)
O(6)	3735 (11)	8635 (12)	3398 (7)	77 (4)
C(7)	- 720 (12)	5246 (13)	3031 (7)	41 (4)
$\hat{O}(\hat{\tau})$	- 1321 (10)	5712 (10)	3122 (6)	65 (3)
CON	-486(12)	3447 (12)	3319 (7)	34 (3)
	- 978 (9)	2755 (0)	3580 (6)	54 (3)
	- 978 (9)	2733 (3)	5560 (0)	29 (4)
(II)	2108 (8)	1/05 (9)	041 (4)	56 (4) 40 (4)
C(12)	1673	1942	60	48 (4)
C(13)	1963	1637	- 564	65 (5)
C(14)	2748	1155	609	68 (5)
C(15)	3243	978	- 28	67 (5)
C(16)	2953	1283	596	47 (4)
CON	1980 (8)	1188 (8)	1882 (5)	36 (3)
C(22)	2797	1366	2444	49 (4)
C(22)	2741	460	2710	53 (4)
C(23)	2741	407	2/17	60 (5)
C(24)	1808	- 000	2432	09 (3)
C(25)	1050	- /64	10/1	61 (0)
C(26)	1106	113	1590	60 (3)
C(31)	5598 (8)	/208 (9)	2465 (6)	42 (4)
C(32)	5959	8373	2557	67 (5)
C(33)	7109	9094	2792	77 (6)
C(34)	7900	8651	2934	100 (8)
C(35)	7539	7486	2841	156 (12)
C(36)	6388	6765	2606	95 (7)
C(41)	3791 (9)	6933 (9)	1485 (5)	41 (4)
C(A2)	4318	6797	934	61 (5)
C(42)	4143	7240	300	64 (5)
C(43)	4143	7240	200	72 (5)
C(44)	3442	7017	370	(2 (5)
C(45)	2915	/954	949	65 (5)
C(46)	3089	7511	1493	53 (4)
C(51)	2080 (8)	5592 (8)	4608 (4)	33 (3)
C(52)	3167	6253	5006	52 (4)
C(53)	3517	5979	5589	60 (5)
C(54)	2780	5045	5773	75 (6)
C(55)	1693	4385	5375	63 (5)
C(56)	1343	4659	4792	46 (4)
C(61)	1359 (9)	7196 (7)	4191 (5)	36 (3)
C(01)	1107	7790	2752	55 (4)
C(02)	1107	0777	3732	79 (4)
C(63)	894	8/32	4010	78 (0)
C(64)	933	9084	4706	/4 (6)
C(65)	1185	8491	5144	72 (5)
C(66)	1398	7547	4886	55 (4)
C(71)	- 2521 (7)	2385 (8)	1931 (5)	34 (3)
C(72)	- 3036	2597	2477	54 (4)
C(73)	-4111	1815	2498	68 (5)
C(74)	- 4671	822	1974	61 (5)
C(75)	- 41 56	610	1428	69 (5)
C(76)	- 3081	1392	1407	51 (4)
C(91)	- 1591 (0)	4160 (0)	1324 (5)	A1 (A)
C(81)	- 1361 (9)	4107 (7)	1324 (3)	41 (4)
C(82)	- 2434	4300	1444	01 (3)
C(83)	- 2/24	5163	1061	69 (5)
C(84)	- 2120	5483	558	/4 (6)
C(85)	- 1246	5146	438	76 (6)
C(86)	- 976	4489	821	62 (5)
C(91)	2123 (8)	3204 (8)	3424 (4)	34 (3)
C(92)	3173	3657	3871	50 (4)
C(93)	3333	3150	4386	59 (5)
C(94)	2443	2191	4452	71 (5)
C(05)	1304	1730	4004	53 (A)
C(93)	1374	2245	3/00	JJ (4)

* Equivalent isotropic U is defined as one third of the trace of the orthogonalized U_{ii} tensor.

^{*} Lists of structure factors, anisotropic temperature factors and H-atom parameters, and a complete list of bond lengths and angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53167 (58 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 2. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters (Å $\times 10^3$) of (II)

	x	У	z	U _{e0} *		x	У	z	U _{eq} *
Re(1)	488 (1)	2954 (1)	1763 (1)	23 (1)	C(36)	2684	7129	1483	49 (3)
Re(2)	3081 (1)	4290 (1)	1992 (1)	24 (1)	C(41)	5580 (5)	7115 (6)	2359 (4)	42 (3)
Re(3)	2925 (1)	6014 (1)	3054 (1)	24 (1)	C(42)	6004	8275	2650	59 (4)
Re(4)	368 (1)	4597 (1)	2905 (1)	23 (1)	C(43)	7212	8967	2820	89 (5)
P(1)	1938 (2)	2270 (2)	1510 (1)	26 (1)	C(44)	7997	8499	2698	88 (5)
P(2)	3994 (2)	6282 (2)	2164 (1)	28 (1)	C(45)	7572	7339	2406	77 (4)
P(3)	1720 (3)	5975 (2)	3919 (1)	28 (1)	C(46)	6364	6648	2237	60 (4)
P(4)	- 1003 (2)	3563 (2)	1893 (1)	25 (Ì)	C(51)	1495 (6)	7230 (5)	4271 (3)	33 (3)
P(5)	1897 (2)	3920 (2)	2883 (1)	26 (I)	C(52)	1229	7798	3835	43 (3)
C(1)	- 515 (10)	1604 (9)	1986 (6)	38 (3)	C(53)	1016	8727	4095	53 (3)
oàí	-1102(7)	778 (7)	2119 (4)	53 (2)	C(54)	1069	9089	4791	57 (4)
C(2)	- 258 (9)	2402 (9)	829 (6)	36 (3)	C(55)	1335	8520	5227	56 (4)
O(2)	- 733 (7)	2058 (7)	267 (5)	61 (2)	C(56)	1548	7591	4967	45 (3)
C(3)	3701 (10)	4310 (9)	1170 (6)	38 (3)	C(61)	2080 (6)	5558 (6)	4668 (3)	29 (3)
O(3)	4134 (8)	4333 (7)	688 (5)	67 (3)	C(62)	3200	6203	5066	40 (3)
C(4)	4399 (10)	4269 (9)	2470 (6)	37 (3)	C(63)	3512	5914	5642	48 (3)
O(4)	5205 (7)	4229 (7)	2769 (4)	56 (2)	C(64)	2704	4979	5820	49 (3)
còs	4343 (10)	6350 (9)	3620 (6)	36 (3)	C(65)	1585	4335	5421	49 (3)
Q(5)	5215 (7)	6566 (7)	3971 (4)	58 (2)	C(66)	1273	4624	4845	39 (3)
C(6)	3331 (10)	7587 (10)	3180 (6)	41 (3)	C(71)	- 1335 (7)	4322 (6)	1332 (3)	34 (3)
0(6)	3563 (8)	8540 (7)	3260 (4)	65 (3)	C(72)	-454	4957	1018	58 (4)
C(7)	- 602 (9)	3527 (9)	3330 (5)	33 (3)	C(73)	- 685	5560	595	90 (5)
	-1192(7)	2828 (7)	3570 (4)	52 (2)	C(74)	- 1797	5529	485	80 (5)
C	- 553 (9)	5436 (9)	2981 (5)	34 (3)	C(75)	- 2677	4894	799	72 (4)
	-1135(7)	5906 (7)	2997 (4)	56 (2)	C(76)	- 2446	4291	1222	53 (3)
cun	2133 (6)	1733 (6)	649 (3)	33 (3)	C(81)	- 2483 (5)	2521 (5)	1920 (4)	34 (3)
CU2	1764	2028	90	46 (3)	C(82)	- 3025	1519	1400	51 (3)
C(13)	2049	1705	- 538	62 (4)	C(83)	- 41 50	712	1405	66 (4)
C(14)	2703	1087	- 606	68 (4)	C(84)	- 4732	907	1030	65 (4)
CUS	3072	792	- 48	64 (4)	C(85)	- 4101	1000	2450	63 (4)
C(15)	2787	1115	590	48 (3)	C(85)	- 3066	2716	2430	45 (3)
C(21)	1910 (6)	1172 (5)	1800 (3)	32 (3)	C(80)	2122 (6)	3211 (5)	3512 (3)	
C(22)	1007	85	1614	49 (3)	C(92)	1101	2211 (3)	3566	25 (2)
C(23)	010	- 798	1909	47 (J) 65 (A)	C(92)	1335	1702	3300	33 (3)
C(24)	1734	- 595	2466	62 (4)	C(94)	2410	2157	4002	52 (3)
C(25)	2637	402	2400	56 (4)	C(95)	2410	2137	4304	51 (3)
C(26)	2725	1375	2467	41 (3)	C(96)	3107	3667	3054	36 (3)
Can	3641 (6)	6873 (6)	1408 (3)	36 (3)	H(1)	1774	4402	1328	00
C(32)	4341	7072	1004	52 (3)	H(2)	1683	5733	7308	90
C(33)	4084	7527	495	67 (4)		5586 (10)	- 696 (9)	4825 (6)	186 (5)+
C(34)	3127	7783	480	58 (4)	C(2)	5742 (15)	834 (13)	4000 (9)	222 (0)+
C(35)	7477	7584	974	69 (4)	C(100)	5093 (22)	454 (21)	4812 (15)	101 (8)†
-()			214	U (4)	2(100)	5575 (22)	454 (21)	4012 (1J)	, ior (o)i

* Equivalent isotropic U is defined as one third of the trace of the orthogonalized U_{ii} tensor.

† Occupation factor 0.5.

atom (Figs. 1 and 2). Because of the well known fact π -electron-acceptor ability, the carbonyls are that a strong π -electron-acceptor CO group prefers trans-positioned ligands without or with less

pseudo-*trans* coordinated to the H or Cl and μ_4 -PPh ligands. This leads to an eclipsed conformation of

CI2 Č8 CI1 č2 02 ^{©01}

Fig. 1. Molecular structure of (I). Phenyl groups have been Fig. 2. Molecular structure of (II). Phenyl groups have been omitted.

omitted.

the CO ligands in (I) and (II), viewed along the directions Re(1)...Re(2) and Re(3)...Re(4).

Striking differences appear in the Re-Re bonding pattern. In (I) (66 VE) with an excess of one valenceelectron pair, one Re-Re bond is lacking as expected, although the related proof is difficult on the basis of Re-Re bond lengths. Hence three lengths [Re(1)-Re(4)]Re—Re bond and Re(2)—Re(3) av. = 2.941 (1) and Re(3)—Re(4) = 3.192 (1) Å] are equivalent to those of analogous Re-Re single bonds in the 64 VE cluster $\operatorname{Re}_4(\mu-\operatorname{Br})(\mu-\operatorname{H})(\mu-\operatorname{PPh}_2)_4(\mu_4-\operatorname{PPh})(\operatorname{CO})_8$ (Haupt. Woyciechowski & Flörke, 1990) [av. 2.940 (2) and 3.152 (2) Å], but the remaining Re…Re contact $[\text{Re}(1) \cdots \text{Re}(2) = 3.382 (1) \text{ Å}]$ with the same bridging atoms as the single bonded Re(3)—Re(4) atoms is only 0.190 (1) Å longer. The present threefold nonmetallic bridging generates a shorter Re…Re contact in (I) than is the case in dirhenium compounds having two instead of three bridging groups, for example, Re…Re = 3.928 (1) Å in Re₂(μ -PPh₂)₂-(CO)₈ (Flörke, Woyciechowski & Haupt, 1988). The Re(1)...Re(2) contact length is accompanied by an enlargement of the angles at P(3) and Cl(2) vs those at P(1) and Cl(1) [by $5 \cdot 2(1)^\circ$], and at P(5) [by $7.2(1)^{\circ}$]. The related bond angles at the bridging atoms Cl(1), P(1) and P(5) of the Re(1)...Re(2) distance do not obey the well known rule that such bond angles are obtuse if no metal-metal bond is present.

To support our interpretation of the Re-Re bonding pattern in (I) solutions of the substance were examined by means of cyclovoltammetric and δ^{31} P NMR analyses. The results ascertain that (I), in solution, undergoes a reversible two-electron transfer step as suggested by Nicholson & Shain (1964). The oxidative redox process generates the 64 VE cation $[\operatorname{Re}_4(\mu-\operatorname{Cl})_2(\mu-\operatorname{PPh}_2)_4(\mu_4-\operatorname{PPh})(\operatorname{CO})_8]^{2+}$ equivalent to $\operatorname{Re}_{4}(\mu-\operatorname{Br})(\mu-\operatorname{H})(\mu-\operatorname{PPh}_{2})_{4}(\mu_{4}-\operatorname{PPh})(\operatorname{CO})_{8}$ with а four-membered ring of single-bonded Re atoms. This underlines the lack of one Re-Re bond in the starting material. For ring closure, the two electrons were removed from an antibonding orbital of the cluster compound (Owen, 1988). Besides, the negative δ^{31} P values of (I) in CDCl₃ agree with δ^{31} P NMR data in similar bridged rhenium clusters confirming the lack of two Re-Re bonds. This indicates that in the time scale of the NMR analysis both equally bridged atom pairs Re(1), Re(2) and Re(3), Re(4) should display a fluctuant behaviour. Regrettably, this assumption could not be proved by temperature-dependent NMR mesurements, since the substance is sparingly soluble below 243 K.

The bonding pattern of (II) with 62 VE consists of four Re-Re bonds. Both hydrido bridged Re-Re bonds are longer than those without such a bridging atom. Their average bond length of 2.965 (1) Å is

Table 3. Selected bond lengths (Å) and bond angles (°)

Re ₄ (μ-Cl) ₂ (μ-PPh ₂) ₄ (μ ₄ -	PPh)	(CO)8	(1)
--	------	-----	----	-----

Re(3) - P(5) - Re(4)

73.3 (1)

$[\text{Re}_4(\mu-\text{Cl})_2(\mu-\text{PPh}_2)]$)₄(μ₄-PPh)(CO)	8] (1)	
Re(1)—Re(4)	2.947 (1)	Re(1)-Cl(1)	2.557 (3)
Re(1) - P(1)	2.473 (2)	Re(1)—P(4)	2.386 (2)
Re(1) - P(5)	2.519 (4)	Re(3)—Re(2)	2.937 (1)
Re(3)-Re(4)	3.192 (1)	Re(3)—Cl(2)	2.551 (3)
Re(3) - P(2)	2.384 (3)	Re(3)—P(3)	2.455 (3)
Re(3) - P(5)	2.547 (3)	$Re(2) \rightarrow Cl(1)$	2.519 (3)
Re(2) - P(1)	2.466 (3)	Re(2) - P(2)	2.376 (3)
Re(2) - P(5)	2.463 (3)	Re(3)-Cl(2)	2.499 (3)
Re(4) - P(3)	2.450 (3)	Re(4)—P(4)	2.370 (3)
Re(4) - P(5)	2.505 (2)	Re(1)Re(2)	3.382(1)
Cl(1) - Re(1) - C(2)	169-6 (3)	P(1) - Re(1) - P(4)	175.9 (1)
P(5) - Re(1) - C(1)	166.5 (3)	Cl(1) - Re(2) - C(3)	174.8 (4)
P(1) - Re(2) - P(2)	162.7 (1)	P(5) - Re(2) - C(4)	162.4 (4)
C(2) - Re(3) - C(5)	174.2 (4)	P(2) - Re(3) - P(3)	172.6 (1)
P(5) - Rc(3) - C(6)	169-0 (3)	Cl(2) - Re(4) - C(8)	175.7 (3)
P(3) - Re(4) - P(4)	168.4 (1)	P(5) - Re(4) - C(7)	168.8 (4)
Re(1) - Cl(1) - Re(2)	83.6 (1)	Re(3) - C(2) - Re(4)	78.4 (1)
Re(1) = P(1) = Re(2)	86.4 (1)	$Re(3) \rightarrow P(2) \rightarrow Re(2)$	76.2 (1)
Re(3) - P(3) - Re(4)	81.2 (1)	Re(1) - P(4) - Re(4)	76.6 (1)
Re(1) = P(5) = Re(2)	85.5 (1)	Re(1) - P(5) - Re(4)	71.8 (1)
Re(3) = P(5) = Re(2)	71.8 (1)	Re(3) - P(5) - Re(4)	78.4 (1)
$[\text{Re}_4(\mu-\text{H})_2(\mu-\text{PPh}_2)]$	$\mu_4(\mu_4-\text{PPh})(\text{CO})$	8] (II)	
Re(1) - Re(2)	2.970 (1)	Re(1)—Re(4)	2.928 (1)
Re(1) - P(1)	2.423 (2)	Re(1) - P(4)	2.369 (2)
Re(1) - P(5)	2.520 (2)	$Re(2) \rightarrow Re(3)$	2.918 (1)
Re(2) - P(1)	2.920(2) 2.420(2)	Re(2) - P(2)	2.370 (2)
Re(2) - P(5)	2.458 (2)	$Re(3) \rightarrow Re(4)$	2.961(1)
Re(3) - P(2)	2.359 (2)	Re(3) - P(3)	2.427 (2)
Rc(3) = P(5)	2.497(2)	Re(4) - P(3)	2.431 (3)
Re(4) - P(4)	2.346(2)	$Re(4) \rightarrow P(5)$	2.464 (2)
	2 5 10 (2)		2(2)
P(1) - Re(1) - P(4)	174.3 (1)	P(5) - Re(1) - C(2)	166.4 (2)
$P(1) \rightarrow Re(2) \rightarrow P(2)$	164-1 (1)	P(5) - Re(2) - C(3)	167.4 (3)
C(3) - Re(2) - C(4)	93.0 (4)	P(2) - Re(3) - P(3)	170.1 (1)
P(5) - Re(3) - C(6)	165.9 (2)	C(5) - Re(3) - C(6)	91.7 (3)
P(3) - Re(4) - P(4)	168.9 (1)	P(5) - Re(4) - C(8)	168.0 (2)
C(7) - Re(4) - C(8)	93.6 (3)	Re(1) - P(1) - Re(2)	75-6 (1)
Re(2) - P(2) - Re(3)	76.2 (1)	Re(3) - P(3) - Re(4)	75-1 (1)
Re(1) - P(4) - Re(4)	76.8 (1)	Re(1) - P(5) - Re(2)	73.2 (1)
Re(1) - P(5) - Re(3)	111.4 (1)	Re(1) - P(5) - Re(4)	71.9 (1)
Re(2) - P(5) - Re(3)	72.2 (1)	Re(2)-P(5)-Re(4)	116.2 (1)

however significantly shorter than that of 3.051(1) Å in $\operatorname{Re}_2(\mu-H)(\mu-PPh_2)(CO)_7PPh_3$ and of 3.194 (1) Å in Re₂(µ-H)(µ-PPh₂)(CO)₆(PPh₃)₂ (Haupt, Balsaa & Flörke, 1987). The average value of the non-hydrido bridged Re-Re bond length is 2.923 (1) Å, somewhat shorter than the 2.940(1) Å of the corresponding bond in $\operatorname{Re}_4(\mu-H)(\mu-Br)(\mu-PPh_2)_4(\mu_4-PPh)$ $(CO)_8$. It is therefore reasonable to postulate, for the hydrido bridged and the other two Re-Re bonds, a contribution of a frontier orbital with partial π -bond property. The other way mentioned to become a 62 VE compound, by the formation of a transannular Re-Re bond (see Introduction), seems to be hindered by the rigid stereochemistry of the μ_4 -PPh group. Regrettably, these findings have not been reflected in the δ^{31} P NMR spectrum of (II) in CDC1₃ since two Re-Re bonds are lacking. The localized μ -H positions in the ΔF map could be ascertained by δ^{T} H NMR data (-10.9, s, 2H).

Intermolecular distances in both substances do not indicate interactions greater than van der Waals forces.

2100

 $[\text{Re}_4\text{Cl}_2(\text{PPh}_2)_4\text{PPh}(\text{CO})_8]$ AND $[\text{Re}_4\text{H}_2(\text{PPh}_2)_4\text{PPh}(\text{CO})_8].0.5\text{CH}_2\text{Cl}_2$

References

- FLÖRKE, U., WOYCECHOWSKI, M. & HAUPT, H.-J. (1988). Acta Cryst. C44, 2101–2104.
- HAUPT, H.-J., BALSAA, P. & FLÖRKE, U. (1987). Z. Anorg. Allg. Chem. 548, 151–160.
- HAUPT, H.-J., BALSAA, P. & FLÖRKE, U. (1988a). Angew. Chem. 100, 280–281.
- HAUPT, H.-J., BALSAA, P. & FLÖRKE, U. (1988b). Inorg. Chem. 27, 280–286.

HAUPT, H.-J., WOYCIECHOWSKI, M. & FLÖRKE, U. (1990). Z. Anorg. Allg. Chem. Submitted.

- NICHOLSON, R. S. & SHAIN, I. (1964). Anal. Chem. 36, 706-723.
- OWEN, S. M. (1988). Polyhedron, 7, 253-283.
- SHELDRICK, G. M. (1988). SHELXTL-Plus Structure Determination Software Programs. Nicolet Instrument Corporation, Madison, Wisconsin, USA.
- WOYCIECHOWSKI, M. (1989). Dissertation, Univ. of Paderborn, Federal Republic of Germany.

Acta Cryst. (1990). C46, 2100-2102

Structure of Tetrakis(diisopropyldithiocarbamato)tellurium(IV)

BY V. KUMAR AND G. ARAVAMUDAN*

Department of Chemistry, Indian Institute of Technology, Madras 600 036, India

M. SESHASAYEE

Department of Physics, Indian Institute of Technology, Madras 600 036, India

AND P. SELVAM AND K. YVON

Laboratoire de Cristallographie aux Rayons X, Université de Genève, CH-1211, Genève-4, Switzerland

(Received 19 December 1989; accepted 5 March 1990)

Abstract. [Te(C₇H₁₄NS₂)₄], $M_r = 832.86$, orthorhombic, $P2_12_12_1$, a = 13.946 (1), b = 14.833 (1), c = 20.213 (3) Å, V = 4181.54 Å³, Z = 4, $D_m = 1.35$, $D_x = 1.32$ Mg m⁻³, λ (Mo $K\alpha$) = 0.71069 Å, $\mu = 1.119$ mm⁻¹, F(000) = 1728, T = 293 K, final R(F) = 0.037, S = 0.83 for 2920 unique reflections. The central Te atom is eight coordinated so that the S atoms form a slightly distorted dodecahedral arrangement around the metal. The lone pair of electrons on Te^{1V} is found to be stereochemically inert. Interligand S···S short contacts of 3.097 (3) and 3.246 (2) Å are observed.

Introduction. Dithiocarbamates are known to undergo redox complexation reactions with metal ions such as Se^{IV} and Te^{IV}, forming divalent selenium and tellurium complexes and the corresponding thiuram disulfides as the oxidation products (Fabiani, Spagna, Vaciago & Zambonelli, 1971; Schnabel, Deuten & Klar, 1980; Kumar, Aravamudan & Seshasayee, 1990). The general reaction between tellurium(IV) and dithiocarbamates (L)can be given as: $Te^{IV} + 4L^- \rightleftharpoons Te^{IV}L_4 \rightleftharpoons Te^{II}L_2 +$ L-L, where L-L is the thiuram disulfide. In various solutions such as dichloromethane, carbon tetrachloride, benzene and acetonitrile, $Te^{IV}LA$ is found to undergo an autoredox reaction leading to the formation of the corresponding $Te^{II}L_2$ species and the thiuram disulfide, L-L.

The structure determination of the title compound was carried out to study whether any structural feature in the solid state can account for its facile autoredox reaction in solutions, to examine whether the lone pair of electrons on tellurium has any stereochemical significance, and also to study the effect of the bulkiness of the ligand on the stereochemistry. Other structures of TeL_4 complexes which have been reported are those of tetrakis(diethyldithiocarbamato)tellurium(IV) (Husebye & Svaeren, 1973): tetrakis(4-morpholinecarbodithioato)tellurium(IV) (Esperas & Husebye, 1975); tetrakis[N-(2hydroxyethyl)-N-methyldithiocarbamatoltellurium-(IV) (Husebye, 1979) and tetrakis[bis(2-hydroxyethyl)dithiocarbamato]tellurium(IV) (Rout, Seshasayee, Aravamudan & Radha, 1984).

Experimental. The title compound was prepared as a yellow solid on addition of 50 ml of 2M acetic acid to 30 ml of 2M sodium hydroxide containing 4 mmol of sodium tellurite and 100 mmol of the sodium salt of diisopropyldithiocarbamic acid. The precipitate was washed with water and air dried. 1 mmol

© 1990 International Union of Crystallography

^{*} To whom correspondence should be addressed.